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Abstract
A description classifier organizes concepts and
relations into a taxonomy based on the results of
subsumption computations applied to pairs of relation
definitions.  Until now, description classifiers have
only been designed to operate over definitions phrased
in highly restricted subsets of the predicate calculus.
This paper describes a classifier able to reason with
definitions phrased in the full first order predicate
calculus, extended with sets, cardinality, equality,
scalar inequalities, and predicate variables.  The
performance of the new classifier is comparable to
that of existing description classifiers.  Our classifier
introduces two new techniques, dual representations
and auto-Socratic elaboration, that may be expected to
improve the performance of existing description
classifiers.

Introduction

A description  is an expression in a formal language that
defines a set of instances or tuples.  A description logic
(also called a terminological logic) consists of a syntax for
constructing descriptions and a semantics that defines the
meaning of each description.  Description logics
[MacGregor 90].provide the foundation for a number of
modern knowledge representation systems, including
Loom[MacGregor 91],  BACK[Peltason 91],
CLASSIC[Borgida et al 89], KREP[Mays et al 91], and
KRIS[Baader&Hollunder 91].  Each of these systems
includes a specialized reasoner called a description
classifier  that computes subsumption relationships
between descriptions, and organizes them into one or
several taxonomies.  Subsumption computations play a role
in these systems analogous to the match or unification
operations performed in other classes of deductive systems.

Description logic systems as a class implement a style of
deductive inference that is deeper than standard
backchaining, and that is much more efficient than theorem
prover-based deduction.  A hallmark of description logics
is that they severely limit the expressive power of their
description languages.  We believe that the absence of full
expressivity is one of the factors that is preventing
description classifiers from becoming a standard

component in knowledge base management systems
[Doyle&Patil 91].  Accordingly, we have developed a new
classifier that accepts description expressions phrased using
the full predicate calculus, extended with sets, cardinality,
equality, scalar inequalities, and predicate variables.  The
description syntax is uniform for predicates of arbitrary
arity, and recursive definitions are supported.

We have found that architectural principles developed
for description logic classifiers can be transferred into a
classifier that reasons with predicate calculus expressions.
This paper begins by describing the internal format and
subsumption algorithm used in the predicate calculus (PC)
classifier.  We next discuss the normal form
transformations used in this classifier.  The strategy for
normalization incorporates two innovations, dual
representations and auto-Socratic elaboration, that increase
both the performance and the flexibility of the classifier.
Finally, we present results indicating that the new classifier
has performance comparable to that of existing classifiers.

Descriptions

A relation description  specifies an intensional definition
for a relation.  It has the following components:

a name (optional);
a list of domain variables < dv1, ... ,dvk >, where k is

the arity of the relation;
a definition—an open sentence in the prefix predicate

calculus whose free variables are a subset of the
domain variables.

a partial indicator (true or false)— if true, it indicates
that the predicate represented by the relation
definition is a necessary but not sufficient test for
membership in the relation.

If a relation description is partial, then the relation is said to
be primitive.  If R is a non-primitive relation with arity one,
then its extension is defined as the set {dv1  | defnR },
where dv1   is the domain variable and defnR  is the
definition in the description of R.  If R is a non-primitive
relation with arity k  greater than one, then its extension is
defined as the set of tuples {< d v1, ... ,dvk > | defnR },
where dv1, ... ,dvk  are the domain variables and defnR  is
the definition in the description of R.  If R is primitive, then



its extension is a subset of the set associated with its
definition.

Relation descriptions are introduced by the defrelation
operator, with the syntax

(defrelation <name> (<domain variables>)
             [:def | :iff-def] <definition>)

The keyword :def  indicates that the definition is partial,
while the keyword :iff-def  indicates that it is not.  For
example

(defrelation Person (?p) :def (Mammal ?p))
defines a relation Person to be a primitive subrelation of the
relation Mammal.1  The description

(defrelation daughter (?p ?d)
   :iff-def (and (child ?p ?d)
                 (Female ?d))))

defines the relation daughter  to be a non-primitive binary
subrelation of the relation child .

A simple sentence is predication of the form (P t 1 ...
t k)  where t 1 ... t k   are terms, and P is either the name of a
k-ary relation or a term that evaluates to a k-ary relation.
Complex sentences are constructed from simple sentences
using the operators and , or , not , and implies , and the
quantifiers forsome and forall .  A term is either a
constant, a variable, a set expression, or a form (F t 1 ...
t j )  where F is a single-valued relation of arity (j+1 ) (i.e., F
is a function).  A variable is a string of characters prefixed
by “? ”.  A set expression is a term of the form
(setof (<variables>) <definition>)  that defines an
unnamed relation with domain variables <variables>  and
definition <definition> .  The function the-relation
takes as arguments a name (a string of characters not
prefixed by “?”) and a positive integer indicating the arity,
and returns the relation with that name and arity (relations
of different arity may share the same name).

Subsumption

The primary deductive task of a description classifier is
the computation of “subsumption” relationships.  We say
that a relation A subsumes  a relation B if, based upon their
respective definitions, the extension of A contains the
extension of B.  A description classifier organizes
descriptions into a hierarchy, with description A placed
above description B if A’s relation subsumes B’s relation.
The inverse relation to subsumes is called specializes.  B
specializes A if A subsumes B.

Consider the following pair of descriptions.
At-Least-One-Son  defines the set of all persons that have
at least one son:

1A sortal relation such as Person would ordinarily be introduced
as a concept, using the defconcept  operator, rather than being
defined as a unary relation.  The algorithm is the same for
classifying concepts and for classifying unary relations.  For
simplicity, we avoid distinguishing between concepts and unary
relations in this paper.

(defrelation At-Least-One-Son (?p)
  :iff-def (and
    (Person ?p)
    (>= (cardinality
           (setof (?c) (son ?p ?c)))
        1))

More-Sons-Than-Daughters defines the set of persons
that have more sons than daughters:

(defrelation More-Sons-Than-Daughters (?pp)
  :iff-def (and
    (Person ?pp)
    (> (cardinality
          (setof (?b) (son ?pp ?b)))
       (cardinality
          (setof (?g) (daughter ?pp ?g))))))

The PC classifier can prove that At-Least-One-Son
subsumes More-Sons-Than-Daughters , i.e. it will classify
More-Sons-Than-Daughters below At-Least-One-Son .
The remainder of this paper describes the proof strategy
that it uses to find such subsumption relationships.

The majority of description classifiers currently
implemented, including the PC classifier, employ a
structural  subsumption test.2 Roughly speaking, to prove
that a description A subsumes a description B, a structural
subsumption prover attempts to demonstrate that for every
structural “component” in (the internal representation for)
the definition of A there exists a “corresponding
component” in (the internal representation for) the
definition of B.  An appealing feature of a classification
strategy that uses a structural test is that much of the
inferencing occurs in a “normalization” phase that precedes
the actual test.  If a description is repeatedly tested for
subsumption against other descriptions (the usual situation
in a classifier) the cost of normalization is amortized across
all tests, thereby lowering the average cost of each
subsumption test.

Most classifiers adopt frame-like representations for their
internal representation of descriptions, and their
subsumption tests operate by comparing the structure
between a pair of such frames.  The PC classifier parses
definitions phrased in the prefix predicate calculus into
graph-based structures, and all subsequent reasoning
involves operations on these graphs.  Each of our graphs
represents a set expression, consisting of a list of domain
variables and a set membership test (the definition).  The
root node of such a graph is equated with a se to f
expression, additional nodes represent each of the domain
variables, and the remaining edges and nodes represent the
membership test.  A node can represent a variable, a
constant, or another set expression.  A predicate applied to
a list of terms is represented by a (hyper) edge connecting
the nodes corresponding to the terms in the list, together
with a pointer to the node that corresponds to the predicate.
Nodes representing skolem variables are introduced to
represent function terms.  Variables other than domain

2The KRIS classifier [Baader&Hollunder 91] is the notable
exception.



variables are assumed to be existentially quantified.  As we
shall see below, our graph representation eliminates the use
of (or need for) universal quantifiers.  The notation
includes explicit representations for disjunction, negation,
and enumerated sets—these constructs lie outside of the
scope of the present discussion.

Because edges in a graph can point to (root nodes of)
other graphs, our graph structures form a network.  Each
edge in the network “belongs to” exactly one graph—the
graph corresponding to the innermost setof expression
that contains the predication that defines that edge.  Each
graph is defined to consist of a set of edges plus the set of
all nodes referenced by those edges.  A node can therefore
“belong to” many different graphs.  The job of a
subsumption test that is comparing graphs A and B is to
find a substitution that maps nodes and edges belonging to
graph A to corresponding nodes and edges belonging to
graph B.

The parser that converts predicate calculus descriptions
into graphs applies a few simple transformations in the
process, including skolemization of set and function
expressions, and conversion of material implications into
subset relations (this is illustrated later in this section).  In
the remainder of this paper, we shall use the term “graph”
to refer to a setof expression that has undergone these
transformations, and we will use graph terminology (e.g.,
nodes, edges, paths) when referring to structural
components and features within our set expressions.

The At-Least-One-Son relation defined above is
associated with a graph representing the following set

(setof (?p)
   (and (Person ?p)
        (>= (cardinality
               (setof (?c) (son ?p ?c)))
        1)

The addition of variables to represent the nested setof
expression and the Skolemized cardinality function
produces the following equivalent set expression

(setof (?p) (exists (?s1 ?card1) [1]
   (and (Person ?p)
        (= ?s1 (setof (?c) (son ?p ?c)))
        (cardinality ?s1 ?card1)
        (>= ?card1 1))))
We can now illustrate how a structural subsumption

algorithm finds a subsumption relationship between
At-Least-One-Son  and More-Sons-Than-Daughters .
Here is the “graph” for More-Sons-Than-Daughters :

(setof (?pp) [2]
   (exists (?s2 ?s3 ?card2 ?card3) (and
      (Person ?pp)
      (= ?s2 (setof (?b) (son ?pp ?b)))
      (= ?s3 (setof (?g) (daughter ?pp ?g)))
      (cardinality ?s2 ?card2)
      (cardinality ?s3 ?card3)
      (> ?card2 ?card3))))

To prove that At -Leas t -One -Son  subsumes
More-Sons-Than-Daughters , we look for a substitution
mapping nodes in [1] to nodes in [2] such that for each

edge in the graph [1] there is a corresponding edge in the
graph [2].  The correct substitution σ is

?p ⇒σ ?pp;  ?s1 ⇒σ ?s2;  ?card1 ⇒σ ?card2
except that there is a problem—no edge in  graph [2]
corresponds to the edge (>= ?card1 1)  in graph [1].
However, a constraint representing the missing edge (>=
?card2 1)  is logically derivable from the existing
constraints/edges present in graph [2]—the addition of this
missing edge would result in a set expression logically
equivalent to the expression [2].  Using a process we call
“elaboration” (explained in Section 5), the PC classifier
applies forward chaining rules to augment each graph with
edges that logically follow from the existence of other
edges already present in the graph.  In the case of graph [2],
the following edges would be added during elaboration

   (Integer ?card2), (>= ?card2 0),
   (Integer ?card3), (>= ?card3 0),
   (>= ?card2 1)

This last edge, representing our “missing edge”, derives
from the fact that ?card3  is non-negative, ?card2  is
strictly greater than ?card3 , hence greater than zero, and
that ?card2  is an integer.  After applying elaboration to
graph [2], the substitution σ successfully demonstrates that
the relation At-Least-One-Son subsumes the relation
More-Sons-Than-Daughters .

To our knowledge, no existing description classifier
other than the PC classifier can compute this subsumption
relation.  We know this because none of them have the
expressive power needed to represent   the relation
More-Sons-Than-Daughters .  Here are two more relations
that cannot be expressed in any existing description logic:

(defrelation One-of-Five-Fastest-Ships (?s)
  :iff-def (and
     (Ship ?s)
     (<= (cardinality
            (setof (?fs)
               (faster-than ?fs ?s)))
         4)))

and
(defrelation Third-Fastest-Ship (?s)
  :iff-def (and
      (Ship ?s)
      (= (cardinality
            (setof (?fs)
               (faster-than ?fs ?s)))
         2)))

Knowledge about upper and lower bounds (in this case,
that “= 2” is a stricter constraint than “<= 4”) is hardwired
into the PC classifier.  Since the remaining structure is
identical between the two graphs, it is straightforward for
the PC classifier to determine that  the relation
One-of-Five-Fastest-Ships  subsumes the relation
Third-Fastest-Ship .

Before we conclude our discussion of graph notation,
recall that it does not provide a means for explicitly
representing universally quantified variables.  Instead,
when the parser encounters an expression of the form



(forall (?v1 ... ?vk)
   (implies <antecedent> <consequent>))

it transforms this expression into the equivalent expression
(contained-in
   (setof (?v 1 ... ?v k) <antecedent>)
   (setof (?v 1 ... ?v k) <consequent>))

where contained-in is the subset/superset relation.  In
effect, reasoning about universally quantified variables is
transformed into reasoning about set relationships.  For
example, the graph for

(defrelation Relaxed-Parent (?p)
  :iff-def (and
     (Parent ?p)
     (forall (?c) (implies (child ?p ?c)
                           (Asleep ?c)))))

is
(setof (?p) (and
   (Parent ?p)
   (contained-in (setof (?c) (child ?p ?c))
                 (setof (?c) (Asleep ?c)))))

Substituting a reference to the unary relation Asleep  for
the set of things satisfying the Asleep  predicate yields

(setof (?p) (and
   (Person ?p)
   (contained-in (setof (?c) (child ?p ?c))
                 (the-relation Asleep 1))))

The Subsumption Test
Let  A and B be relations defined by expressions/graphs

GA and GB.  We apply the following test to prove that A
subsumes B:  If A is primitive (if its description is partial)
then succeed if GB explicitly inherits a relation known to
specialize A.  Formally, B specializes a primitive relation
A if GB contains an edge R(dv1, ... ,dvk) where dv1, ...
,dvk are the domain variables in the root node of GB and R
is a relation that specializes A.  Otherwise (A is not
primitive) succeed if there exists a substitution σ from
nodes in GA to nodes in GB such that all of the following
conditions hold:

(1a)  If x is a constant node in GA, then σ(x) denotes
the same constant, i.e., σ(x) = x;

(1b)  If x is a set node in GA, then σ(x) is also a set
node and definition(x) ≡σ definition(σ(x)), where
for all set nodes y, “definition(y)” refers to the
subgraph that defines y, and “≡σ” denotes
structural equivalence under the substitution σ;

(2)  If PA(x1, ... ,xk) is an edge in GA then there exists
an edge PB(σ(x1), ... , σ(xk)) in GB such that
either

(i) PB = σ(PA) or
(ii) PA  and PB  are relations and PB

specializes PA, or
(iii) the edge PA(x1, ... ,xk) matches one the

special cases 3a, 3b, 4a, 4b, 4c, or 4d;
(3a)  If contained-in(x,RA) is an edge in GA and RA is

a relation, then there exists an edge

contained-in(σ(x),RB) in GB such that RB
specializes RA;

(3b)  If contains(x,RA) is an edge in GA and RA is a
relation, then there exists an edge
contains(σ(x),RB) in GB such that RB subsumes
RA;

(4a)  If >=(x,kA) is an edge in GA and kA represents a
numeric constant (kA denotes a number) then
there exists an edge >=(σ(x), kB) in GB such that
value(kB) >=  value(kA), where for all constant
nodes k, “value(k)” is the denotation of k;

(4b, 4c, 4d)  Analogous to (4a) for the relations <=, <,
and >.

Remark:  The alternatives (ii) and (iii) in condition 2
above serve to relax what would otherwise be a strictly
structural  subsumption test.  Their inclusion in our test
enables us to reduce the size of our graphs.  For example, if
one of our graphs contains both of the edges C(x) and C’(x)
and C’ specializes C, then we can eliminate the edge C(x)
without sacrificing inferential completeness.

Canonical Graphs

To the best of our knowledge, all classifiers that utilize a
structural subsumption test preface that test with a series of
transformations designed to produce a “canonical” or
“normalized” internal representation for each of the
relations being tested.  The strategy underlying these
canonicalization transformations is to make otherwise
dissimilar representations become as alike as possible, so
that ideally, a structural test would suffice for determining
subsumption relationships.  For all but very restricted
languages this strategy cannot result in a test for
subsumption that is both sound and complete.  For
languages as expressive as NIKL , Loom, or BACK, theory
tells us that a sound and complete decision procedure for
testing subsumption relationships does not exist (i.e.,
subsumption testing is “undecidable”) [Patel-Schneider
89].  The designers of structural subsumption-based
classification systems have concluded that a strategy that
relies on (imperfect) canonicalization transformations and a
structural subsumption test represents a reasonable
approach to “solving” this class of undecidable problems.

The PC classifier splits the normalization process into
two phases.  In the canonicalization  phase, equivalence-
preserving transformations (rewrite rules) are applied that
substitute one kind of graph structure for another.  In the
subsequent elaboration  phase, structure is added to a graph
(again preserving semantic equivalence), but no structure is
subtracted.  The PC classifier implements several
canonicalization strategies.  The most important is the
procedure that “expands” each of the edges in a graph that
is labeled by a non-primitive relation.  An edge with label
R is expanded by substituting for the edge a copy of the
graph for R.  A second important canonicalization is one
that substitutes an individual node for a nested set in cases



Representative Selection of Elaboration Rules

Inequality rules:
I1 >= MIN and Number(MIN) and I2 >= I1 ⇒ I2 >= MIN ; propagate lower bound
I1 > MIN and Number(MIN) and I2 >= I1 ⇒ I2 > MIN ; propagate strict lower bound
I1 >= MIN and Number(MIN) and I2 > I1 ⇒ I2 > MIN ; propagate strict lower bound
I1 <= MAX and Number(MAX) and I2 <= I1 ⇒ I2 <= MAX ; propagate upper bound
I1 < MAX and Number(MAX) and I2 <= I1 ⇒ I2 < MAX ; propagate strict upper bound
I1 <= MAX and Number(MAX) and I2 < I1 ⇒ I2 < MAX ; propagate strict upper bound
I > MIN and Integer(I) ⇒ I >= floor(MIN) + 1 ; round lower bound up
I >= MIN and Integer(I) and Number(MIN) and not(Integer(MIN))
                 ⇒ I >= floor(MIN) + 1
I < MAX and Integer(I) ⇒ I <= ceiling(MAX) - 1 ; round upper bound down
I <= MAX and Integer(I) and Number(MAX)
                 and not(Integer(MAX)) ⇒ I <= ceiling(MAX) - 1
I1 >= I2 and I2 >= I1 ⇒ I1 = I2 ; equate two-way greater or equal
I1 >= I2 ⇒ I2 <= I1 ; inverse greater or equal
I1 <= I2 ⇒ I2 >= I1 ; inverse lesser or equal
I1 > I2 ⇒ I2 < I1 ; inverse greater
I1 < I2 ⇒ I2 > I1 ; inverse lesser

Cardinality rules:
set(S) ⇒ exists(I) cardinality(S,I) ; sets have cardinalities
cardinality(S,I) ⇒ Integer(I) ; integer cardinality
cardinality(S,I) ⇒ I >= 0 ; non-negative cardinality
contained-in(S1,S2) ⇒ cardinality(S1) <= cardinality(S2)) ; greater cardinality superset
I >= MIN and I <= MAX  and Integer(I) and Integer(MIN)
                 and Integer(MAX) and domain-variable(S,I)
                 and arity(S) = 1 ⇒ cardinality(S) <= MAX - MIN
in(I,S) ⇒ cardinality(S) >= 1 ; non-empty set
cardinality(S) = 1 and in(I,S) and in(J,S) ⇒ I = J  ; equate members of singleton set

Contained-in rules:
contained-in(S1,S2) and in(I,S1) ⇒ in(I,S2)   ; propagate members up
contained-in(S1,S2) and cardinality(S1) = cardinality(S2) ⇒ S1 = S2 ;equate equal cardinality superset
contained-in(S1,S2) and contained-in(S2,S3) ⇒ contained-in(S1,S3) ; transitivity of contained-in
contained-in(S1,S2) and contained-in(S2,S1) ⇒ S1 = S2 ; equate two-way containment
S1 = S2 ⇒ contained-in(S1,S2) ; reflexivity of contained-in
contained-in(S1,S2) and contained-in(S1,S3) and intersection(S2,S3,S4) ; contained-in intersection set
                 ⇒ contained-in(S1,S4)
contained-in(S1,S2) ⇒ contains(S2,S1) ; inverse contained-in
contains(S1,S2) ⇒ contained-in(S2,S1) ; inverse contains

Other rules:
in(I,S1) and in(I,S2) and intersection(S1,S2,S3) ⇒ in(I,S3) ; member of intersection set
domain-variable(S1,I1) and arity(S1) = 1
                 and in(I1,S2) ⇒ contained-in(S1,S2)

Table 1

when this transformation is guaranteed to preserve
semantic equivalence.

Elaboration

This section describes two of the elaboration procedures
implemented in the PC classifier.1  Each of them
implements a form of constraint propagation.  Collectively,
the constraint propagation procedures incorporated into the

1Other elaboration procedures include primitive edge expansion,
recognition ,and realization.

PC classifier implement four of the five classes of forward
constraint propagation (all but Boolean constraint
propagation) embodied in McAllester’s SCREAMER
system [McAllester&Siskind 93].

Elaboration Rules and Dual Representations
An “elaboration rule” is an if-then rule that adds edges

(or occasionally, nodes) to a graph.  Table 1 illustrates
many of the elaboration rules used in the PC classifier.  A
comparison of our rules with those published by Borgida to
describe the Classic classifier [Borgida 92] reveals that our
rules tend to be finer grained than those in Classic,



enabling it, for example, to have a superior ability to reason
about cardinality relationships (as evidenced by the sons-
and-daughters and fastest-ships examples in Section 2).

A graph is elaborated by applying the rules in Table 1
repeatedly until no additional structure can be produced
(the use of these rules is similar to the use of  a “local” rule
set [Givan&McAllester 92]).   In addition, the elaboration
procedure applies a structural subsumption test between
each pair of nested sets, and adds a “contained-in” edge if it
finds a subsumption relationship. Consider the following
definition:

(defrelation Brothers-Are-Friends (?p)
   :iff-def (contained-in
               (setof (?b) (brother ?p ?b))
               (setof (?f) (friend ?p ?f))))

The graph for this relation is
(setof (?p) (exists (?s1 ?s2)
   (and
      (= ?s1 (setof (?b) (brother ?p ?b)))
      (= ?s2 (setof (?f) (friend ?p ?f))))
      (contained-in ?s1 ?s2))))

Applying the applicable elaboration rules results in the
following graph

(setof (?p) (exists (?s1 ?s2 ?card1 ?card2)
   (and
      (= ?s1 (setof (?b) (brother ?p ?b)))
      (= ?s2 (setof (?f) (friend ?p ?f))))
      (cardinality ?s1 ?card1)
      (cardinality ?s2 ?card2)
      (Integer ?card1) (>= ?card1 0)
      (Integer ?card2) (>= ?card2 0)
      (>= ?card2 ?card1) (<= ?card1 ?card2)
      (contained-in ?s1 ?s2)
      (contains ?s2 ?s1))))

Elaboration is applied to a graph for the purpose of making
implicit structure explicit, and therefore accessible to our
structural subsumption algorithm.  We observe that our
graph for Brothers-Are-Friends  now has quite a bit of
additional structure.  The up side to elaboration is that
when seeking to prove that Brothers-Are-Friends is
subsumed by some other relation R, the additional structure
increases the possibility that our subsumption test will
discover that R subsumes Brothers-Are-Friends
(because in this case the graph for Brothers-Are-Friends
contains additional structure to map to).  The down side is
that the additional structure could make it less likely that
the subsumption test finds the inverse subsumption
relationship, i.e., that Brothers-Are-Friends subsumes
R (because in this case the graph for
Brothers-Are-Friends contains additional structure that
must be mapped from).  Intuitively, if G is a graph,
applying elaboration rules to G makes it “easier” to classify
G below another graph, but it makes it “harder” to classify
another graph below G.

The standard answer to this apparent conundrum is to
elaborate all graphs before computing subsumption
relationships between them.  We find two problems with
the standard approach: (1)  For this strategy to succeed, it is

necessary to apply “the same amount” of elaboration to all
graphs .  As we shall soon see, in the scheme we have
implemented for the PC classifier, the amount of
elaboration applied to a graph is variable, depending on
more than just the initial graph structure.  (2)  Because it
causes the size of a graph to increase, elaboration degrades
the performance of a subsumption algorithm at the same
time that it increases the algorithm’s completeness.

Dual Representations
Our solution is to maintain two separate graphs for each

relation, one elaborated and one not.  Given a relation R, let
g(R) refer to the canonicalized but unelaborated graph for
R, and let e-g(R) refer to the canonicalized and  elaborated
graph for R.  To test if relation R subsumes relation S, our
subsumption algorithm compares g(R) with e-g(S), i.e., it
looks for a substitution that maps from the unelaborated
graph for R to the elaborated graph for S.

This “dual representation” architecture completely solves
the first of the two problems we cited above, and reduces
the negative effect on performance of the second:  (1)  For
relations R and S, increasing the amount of elaboration
applied to e-g(R) increases the completeness of a test to
determine if S subsumes R, without affecting the
completeness of a test to determine if R subsumes S.  (2)
Assume that the cost of a subsumption test between two
graphs is proportional to the product of the “sizes” of those
graphs.  If elaboration causes the size of each graph to
grow by a factor of K, then the cost of comparing e-g(R)
and e-g(S) is (K * K) times the cost of comparing g(R) and
g(S).  However the cost of comparing e-g(R) with g(S) is
only K times the cost of comparing unelaborated graphs.
Hence, according to this rough calculation, the standard
elaboration strategy has a cost K times that of the dual
representation strategy, where K is the ratio between the
relative sizes of elaborated and unelaborated graphs.

Auto-Socratic Elaboration
A potentially serious drawback of conventional (overly

aggressive) elaboration strategies is that they may generate
graph structures that are never referenced by any
subsequent subsumption tests (these represent a waste of
both time and space).  Alternatively, an overly timid
strategy may suffer incompleteness by failing to generate
structures that it should.  This section introduces a new
technique, called “auto-Socratic elaboration”, that assists
the classifier in controlling the generation of new graph
structure.

Given a graph G, if we add a new set node N to G
containing any definition whatsoever, but we do not add
any new edges that relate N to previously existing nodes in
G, then the denotation of G remains unchanged.  Hence,
this represents a legal elaboration of the graph G.  Consider
the following pairs of graphs:



“The set of things with at most two female children”
(setof (?p) [3]
    (exists (?s0 ?card0) (and
      (= ?s0 (setof (?c) (and
                (child ?p ?c) (Female ?c)))
      (cardinality ?s0 ?card0)
      (>= 2 ?card0))))

“The set of things with at most two children”
(setof (?p) (exists (?s1 ?card1) [4]
   (and (= ?s1 (setof (?c) (child ?p ?c)))
        (cardinality ?s1 ?card1)
        (>= 2 ?card1))))

In this section, we discuss the problem of determining that
the graph [3] subsumes the graph [4].  Our structural
subsumption test fails initially because no set node in [4]
corresponds to the set node ?s0 in [3].  We can elaborate
graph [4] by adding to it a new set node ?s2 having the
same definition as that of ?s0, resulting in:

(setof (?p) [5]
   (exists (?s1 ?card1 ?s2) (and
      (= ?s1 (setof (?c) (child ?p ?c)))
      (= ?s2 (setof (?c) (and
                (child ?p ?c) (Female ?c)))
      (cardinality ?s1 ?card1)
      (>= 2 ?card1))))

The elaboration procedure described in the previous section
will apply a subsumption test to the pair <?s1,?s2>,
resulting in the addition of the edge “contains(?s1,?s2)”
(thereby making an implicit subsumption relationship
explicit).  Application of Table 1 elaboration rules yields

(setof (?p) [6]
   (exists (?s1 ?card1 ?s2 ?card2) (and
      (= ?s1 (setof (?c) (child ?p ?c)))
      (= ?s2 (setof (?c) (and
                (child ?p ?c) (Female ?c)))
      (cardinality ?s1 ?card1)
      (cardinality ?s2 ?card2)
      (contains ?s1 ?s2)
      (>= 2 ?card1)
      (>= ?card1 ?card2)
      (>= 2 ?card2))))
Structural subsumption can determine that graph [3]

subsumes graph [6], implying that graph [3] also subsumes
graph [4].  It remains for us to specify how and when the
PC classifier decides to add a new set node to a graph, as

exemplified by the transformation from graph [4] to
graph[5].

Our PC classifier implements a “demand-driven”
strategy for adding new set nodes to a graph.  If a test to
determine if a graph GA subsumes a graph GB returns a
negative result, and if the result is due to the identification
of a set node NA in GA for which there is no set node in
GB having an equivalent definition, the following steps
occur:

(1)  A new set node NB with definition equivalent to
that for NA (after substitution) is added to GB;

(2)  Tests are made to see if NB subsumes or is
subsumed by any other sets in GB;

(3)  If so, new contained-in edges are added, triggering
additional elaboration of GB;

(4)  The subsumption test is repeated.
We call this procedure “auto-Socratic elaboration”.

“Socratic” inference [Crawford&Kuipers 89] refers to an
inference scheme in which the posing of questions by an
external agent triggers the addition (in forward chaining
fashion) of new axioms to a prover’s internal knowledge
base.  We refer to our procedure as “auto-Socratic” because
in the PC classifier, the system is asking i t s e l f
(subsumption) questions in the course of classifying a
description, and its attempts to answer such questions may
trigger forward-driven inferences (elaborations).

Performance

The PC classifier was compared with that of the Loom
classifier on three different knowledge  bases. The largest
(containing approximately 1300 definitions) is a translated
version of the Shared Domain Ontology (SDO) knowledge
base used by researchers in the ARPA/Rome Labs Planning
Initiative.  The other two knowledge bases were
synthetically generated using knowledge base generator
procedures previously used in a benchmark of six
classifiers performed at DKFI[Profitlich et al 92].1  The
results of Table 2 indicate that the Loom classifier is
roughly twice as fast the PC classifier.2

1Loom was one of the faster classifiers in the DFKI benchmark.
2Testing was performed on a Hewlitt-Packard 730 running Lucid
Common Lisp.

Knowledge Base PC Classifier Loom Classifier
SDO 80 seconds 45 seconds
Synthetic #1 58 seconds 22 seconds
Synthetic #2 45 seconds 34 seconds

Table 2



Completeness

DL languages have been developed that have complete
classifiers. However, completeness comes at a steep price:
the DL languages that support complete classification have
very restricted expressiveness. While such languages are of
theoretical interest, and may be useful for certain niche
applications, their severe constraints limit their utility and
preclude them from broad application.

In contrast, our approach provides a rich and highly
expressive representation language. If this expressiveness
is used, then classification must be incomplete. But where
should it be incomplete? Different applications and
domains will stress different sorts of reasoning. Inferences
that are important in one will be inconsequential in another.
A virtue of the PC architecture is that it is flexible and
extensible. By changing elaboration rules, we can fine-tune
the performance of the classifier, allowing us to change the
kinds of inferences that are supported and tradeoff the
breadth and depth of inference against efficiency. Thus, the
PC classifier and language frees an application developer
from a representational straitjacket by enhancing both the
expressiveness of the language and the range of inference
that can be supported.

Conclusions

DL languages have been developed that have complete
classifiers. However, completeness comes at a steep price:
the DL languages that support complete classification have
very restricted expressiveness. While such languages are of
theoretical interest, and may be useful for certain niche
applications, their severe constraints limit their utility and
preclude them from broad application.

In contrast, our approach provides a rich and highly
expressive representation language. If this expressiveness
is used, then classification must be incomplete. But where
should it be incomplete? Different applications and
domains will stress different sorts of reasoning. Inferences
that are important in one will be inconsequential in another.
A virtue of the PC architecture is that it is flexible and
extensible. By changing elaboration rules, we can fine-tune
the performance of the classifier, allowing us to change the
kinds of inferences that are supported and tradeoff the
breadth and depth of inference against efficiency. Thus, the
PC classifier and language frees an application developer
from a representational straitjacket by enhancing both the
expressiveness of the language and the range of inference
that can be supported.
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